×
switch account
政大開放式課程影音網
關於我們
課程選單
知識中心
文學院
Log in
English
繁體
简体
Regular
Medium
Large
×
Search
Search
×
Text size
Text size
Regular
Medium
Large
政大開放式課程影音網
Log in
關於我們
課程選單
知識中心
文學院
English
繁體
简体
Media:
41
Create:
2021/08/06
Manager:
系統管理者
Search
Media
(41)
Forum
(0)
FAQ
(0)
Media Center
Overview
MOOCs自學課程
張家銘、彭彥璁-資料科學與深度學習
Media
張家銘、彭彥璁-資料科學與深度學習
張家銘、彭彥璁-資料科學與深度學習
Manager:系統管理者
1.
01:25
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-宣傳影片
2.
第一單元:線性回歸模型
2.1
12:08
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-1-1 線性回歸模型介紹
2.2
12:08
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-1-2-1 線性回歸模型利用 R 語言-1
2.3
10:25
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-1-2-2 線性回歸模型利用 R 語言-2
2.4
07:18
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-1-3 計算線性回歸模型參數
2.5
10:40
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-1-4 評估參數的正確性
2.6
08:37
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-1-5 計算參數統計顯著
3.
第二單元:羅吉斯回歸模型
3.1
10:13
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-2-1 羅吉斯回歸與線性回歸連結
3.2
06:29
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-2-2 羅吉斯轉換
3.3
08:03
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-2-3 如何解讀回歸參數
3.4
08:43
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-2-4 羅吉斯回歸進階應用
3.5
11:00
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-2-5 多重回歸與多個單一回歸的差別
4.
第三單元:回歸模型進階應用
4.1
12:30
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-3-1 回歸模型進階課題
4.2
10:54
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-3-2 非線性課題
4.3
06:43
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-3-3 不尋常值偵測
4.4
09:20
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-3-4 特徵相依性
4.5
10:53
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-3-5-1 回答商業需求-1
4.6
05:44
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-3-5-2 回答商業需求-2
5.
第四單元:何謂人工智慧
5.1
05:41
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-4-1 Artificial Intelligence AI
5.2
10:30
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-4-2 人工智慧與機器學習及深度學習關係
5.3
09:45
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-4-3-1 General Deep Learning Framework 常見的深度學習架構
5.4
09:03
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-4-3-2 Regularization 正則化
5.5
10:55
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-4-3-3 Different Type of Learning 不同的學習方式
5.6
06:04
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-4-3-4 Regression vs Classification 回歸 vs 分類
5.7
13:50
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-4-3-5-1 Optimization and Loss Function 優化器與損失函數-1
5.8
09:21
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-4-3-5-2 Optimization and Loss Function 優化器與損失函數-2
6.
第五單元:卷積神經網路
6.1
08:17
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-5-1 Convolutional Network 卷積網路
6.2
02:52
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-5-2 Fully Connected Layer 全連接層
6.3
07:13
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-5-3-1 Convolutional Layer 卷積層-1
6.4
12:58
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-5-3-2 Convolutional Layer 卷積層-2
6.5
03:49
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-5-4 Pooling Layer and Flatten 池化層與攤平
6.6
04:20
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-5-5 Neural Networks 類神經網路
6.7
05:49
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-5-6 Feature Extraction 特徵抽取
6.8
11:55
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-5-7-1深度學習架構介紹-1
6.9
10:16
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-5-7-2 深度學習架構介紹-2
7.
第六單元:深度學習訓練
7.1
12:26
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-6-1-1 常用深度學習訓練技巧-1
7.2
12:17
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-6-1-2 常用深度學習訓練技巧-2
7.3
03:41
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-6-1-3 常用深度學習訓練技巧-3
7.4
14:12
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-6-2-1 進階深度學習技術介紹-1
7.5
13:26
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-6-2-2 進階深度學習技術介紹-2
7.6
05:59
110 - 磨課師課程-張家銘、彭彥璁-資料科學與深度學習-6-2-3 進階深度學習技術介紹-3